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Study Note: Model Validation and Holdout Data 
1/13/2019 

The importance of testing models on out-of-sample data should not be underestimated. Testing a model on data 

that has been used to fit the model’s parameters will provide an overly optimistic assessment of its predictive 

power. This study note provides some general remarks on model validation, the importance of using out-of-

sample data, and examples of diagnostic tools such as: 

 the Gini coefficient,  

 the Lorenz curve,  

 lift charts, and  

 the receiver operating characteristic curve. 

General Remarks 
The proper testing of models on out-of-sample data is absolutely crucial. However, there are different types of 

testing that accomplish different things. For example, it is common to divide one’s data into three parts: (1) a 

training set, used for building models; (2) a test set, used frequently during the model build process to test those 

models; and (3) a holdout set, saved until the end of the modeling process, to provide an objective metric of 

goodness of fit that can be reported to management. (The term “validation set” is sometimes used, but since it is 

sometimes used for (2) and sometimes for (3), we have avoided this term.) The metric used could be a Gini 

coefficient, the area under the receiver operating characteristic (ROC) curve, the squared error (or other cost 

function), a gains chart, or a lift curve, in each case applied to the holdout data the model has not yet seen. In 

order to ensure that the holdout test is objective, one should separate the holdout data as early in the process as 

practicable1, and store it in a separate file not accessible during the modeling process. 

There is no hard-and-fast rule for the sizes of these sets across all types of models, but for many types of models, 

it is usual to assign one-third of the data at random to each set. It may be tempting to make the training set larger 

and the test and holdout datasets smaller, but (a) building on a smaller dataset is a good way to avoid a natural 

tendency toward overfit models with too many parameters and (b) if your test and holdout datasets are too small, 

one will be tempted not to trust the out-of-sample tests, which rather defeats their purpose. 

The reason that the test set will not serve the purpose of the objective test is that, since one has repeatedly 

compared to it, one has in some sense fit the model to the test data as well as to the training data.            In fact, 

one can make a virtue of this and swap the roles of the training and test data during the course of the modeling 

process, as one zeroes in on the best model. 

We are often asked why one needs holdout data when one can get an out-of-sample test using cross-validation, 

where a dataset is divided into K folds and the goodness of fit calculated by using the model fit to all folds but the 

i-th one to make predictions for the observations in the i-th fold. This can indeed work if the model building 

                                                 
1 Typically one does some level of data profiling before separating the holdout data in order to: (a) match control totals to 

ensure the dataset is complete and correct; and (b) ensure that all possible values are known for each categorical field. 
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process is completely automated. However, when human beings are building the model, the choice of model 

(including type of model, which variables were candidates to final feature selection, which derived features were 

created) has typically been impacted by all the data the modeler has worked with…the whole dataset. Even 

though one may be fitting parameters and even performing final feature selection separately for each collection of 

K-1 folds, those models will have been influenced by all the data. This does not mean that cross-validation is 

useless for human-built models. It merely means that the proper use of cross-validation is as a substitute for the 

training/test split, not as a substitute for having true holdout data. (In fact, the suggestion above to swap training 

and test data during the modeling process is a form of two-fold cross-validation that is very tractable for human 

modelers.) Also, note that nothing is lost in terms of the final model by using the holdout approach. It is familiar 

in the cross-validation approach that the union of the cross-validation models provides the goodness of fit metrics 

whilst the model to be used is fit on all the data at once. The same is true in the holdout approach. After testing on 

holdout data to obtain the objective quality of the model, one can (and usually does) refit on the complete data to 

obtain the final model. One can even change the model if adding the holdout data makes it clear that one should. 

What one cannot do is claim a better goodness of fit than one has already measured. 

In order to ensure independence of the training, test, and validation data, it is good practice to ensure the 

correlated observations (i.e., ones that are still correlated even after conditioning on the model variables) are all 

put into the same group. For example, if the unit of observation is one policy for one year, the series of 

observations that correspond to a single policyholder over that period of time would be put into the same group. 

Or if the model is a severity model for weather claims, claims from the same storm might be put into the same 

group. If time is the main driver of correlation then one might use a contiguous block of time for each group, 

known as out-of-time validation. For many insurance problems, however, time is not the main dimension, and 

splitting on the time variable may actually be undesirable because one may want to incorporate time explicitly in 

the model or to test consistency of effects across time within the training data as one of the criteria for including a 

variable. This latter is actually straightforward to do: Look at residuals across the levels of the variable in question 

for the earlier half (temporally) of the data and for the latter half of the data, and compare. 

Finally, one practical aspect of splitting data for testing and validation is that datasets evolve. Perhaps, for 

example, it turns out that a small set of observations were erroneously included, or the business identifies certain 

observations as not relevant to going-forward strategy and asks that they be omitted. If you have used a random 

number generator and appended a string of random numbers to a list of policy numbers in order to split the data 

into thirds, now you not only need to have stored the random number seed and have access to the exact same 

random number generator to reproduce the random split, and to have sorted your data the precise way you had 

done previously, you also need to match at precisely the right midway point in your data filtering process. Thus, it 

can be much simpler to use a hash of the relevant unit information (e.g., policy number and policyholder name) 

rather than a random number generator in order to assign an observation to a group. However, the selection of 

hash function is critical, since one needs to avoid assigning similar hashes to similar initial values, and most hash 

functions will fail this test. However, the hash function MD5 is considered suitable for this purpose2.  

                                                 
2 The interested reader will find additional information in section 4.1 of Kohavi, Henne, and Sommerfield, “Practical Guide 

to Controlled Experiments on the Web,” KDD2007, currently available at 

https://ai.stanford.edu/~ronnyk/2007GuideControlledExperiments.pdf 

https://ai.stanford.edu/~ronnyk/2007GuideControlledExperiments.pdf
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The Gini Coefficient and the Lorenz Curve 

The Gini Coefficient is named after Corrado Gini, an Italian economist who developed as a measure of statistical 

dispersion of income or wealth within the population of a nation. For more details, see the following Wikipedia 

article: https://en.wikipedia.org/wiki/Gini_coefficient. The Lorenz Curve is related to the Gini coefficient, and it 

shows the distribution of income or wealth graphically. See Wikipedia article here: 

https://en.wikipedia.org/wiki/Lorenz_curve.   

The following example illustrates the relationship between the Lorenz Curve and the Gini Coefficient using chick 

weight data from the ChickWeight data set in the R datasets package. The horizontal axis is the percentage of total 

chickens, and the vertical axis is the percentage of total weight in a training sample. The diagonal line is the “line 

of equality.” If all chickens were the same weight, as the cumulative count of chickens increased, the cumulative 

sum of their weight would increase in the same proportion. However, when you sort records in increasing order of 

weight, cumulative weight increases slowly at first, so the Lorenz Curve, in blue, increases slowly. As more and 

more larger chick weights are added, the percentage of total chick weight increases more rapidly that the 

percentage of total chick count, and the curve becomes steeper. In the graph, the area between the line of equality 

and the Lorenz Curve is labeled A, and the area below the Lorenz Curve is labeled B. The Gini coefficient is the 

ratio A to the sum of A and B. Thus, Gini = A / (A + B) = 2A, since A + B = 1/2.  

 

 

 

Note there is a slight difference between the training and test samples. The training sample has a slightly higher 

Gini coefficient, indicating there is slightly more variation in the data. I produced the plots above using the gini 

function from the reldist package, and the Lc function from the ineq package, as follows: 

https://en.wikipedia.org/wiki/Gini_coefficient
https://en.wikipedia.org/wiki/Lorenz_curve
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# 

# use ChickWeight data from datasets package 

# 

cw <- as.data.frame(ChickWeight) 

set.seed(123) 

row_count <- dim(cw)[1] 

cw$count <- as.numeric(rep(1,row_count)) 

cw$sample <- as.factor(sample(c("Test","Train"),  

                                row_count, replace=TRUE,  

                                prob = c(0.3,0.7))) 

# 

# check row counts and percentages in resulting samples 

# 

summary(cw$sample) 

summary(cw$sample) / row_count 

# 

# Gini Coefficient and Lorenz Curve on training data 

# 

library(ineq) 

library(reldist) 

cw_train <- subset(cw, sample == "Train") 

train_gini <- gini(cw_train$weight) 

xtitle <- paste("Gini Coefficient =", round(train_gini,5)) 

plot(Lc(cw_train$weight), col = "blue", lwd = 2,  

     main = "Training Sample", xlab = xtitle) 

round(with(cw_train, WeightedGini(weight, count, weight)), 5) 

# 

# Gini Coefficient and Lorenz Curve on test data 

# 

cw_test <- subset(cw, sample == "Test") 

test_gini <- gini(cw_test$weight) 

xtitle <- paste("Gini Coefficient =", round(test_gini,5)) 

plot(Lc(cw_test$weight), col = "blue", lwd = 2,  

     main = "Test Sample", xlab = xtitle) 

round(with(cw_test, WeightedGini(weight, count, weight)), 5) 
 

To produce a Gini coefficient and a Lorenz curve plot for a model, it is necessary to modify the functions. Instead 

of sorting based on actual data, one sorts by predicted values. It is also advisable to include a random number 

column as a secondary sort key. If a model produces the same predicted value for large segments of the data, and 

if those segments had been previously sorted in ascending order of actual values, and if the sort function preserves 

that order, the Gini coefficient and Lorenz curve might look better than they ought to be. Introducing a random 

number column as a secondary sort key avoids that issue. 
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Normalized Gini Coefficient 

A good model should reflect the heterogeneity of the data. However, if it reflects too much of the heterogeneity of 

the data, it is overfit, and it will not generalize well. A measure of how well a model fits the data is the ratio of the 

Gini coefficient for data sorted by predicted values (model Gini) to the ratio of the Gini coefficient for data sorted 

by actual values (data Gini), such as NormalizedWeightedGini function in https://www.kaggle.com/c/liberty-

mutual-fire-peril/discussion/9880   

 

Normalized Gini = Model Gini / Data Gini 

 

The normalized Gini coefficient adjusts for a possible difference between the Gini coefficient of the training 

sample versus the Gini coefficient for a testing or holdout sample. 

 

Considerations 

1. A saturated model, one with as many parameters as there are observations, and where the predicted value 

is equal to the actual value, would have a normalized Gini equal to unity. Such a model, however, would 

not generalize well. Indeed, how would one score a different data set? 

2. A model where the predicted value is a constant, would have a normalized Gini equal to zero.  
3. A model generalizes well if its normalized Gini in a testing or holdout sample is reasonably close to its 

normalized Gini in the training sample. 

 

Thus, evaluating the normalized Gini coefficient of a model is a bit of an art. The model should have a reasonably 

high normalized Gini, and the normalized Gini when testing the model on a testing or holdout sample should be 

reasonably close to the normalized Gini when testing on the training sample. 

 

As an example, we use the normalized Gini coefficient to compare two different models (a random forest and an 

ordinary linear regression) fitted to the chick weight data. The following graphs show the Gini coefficient for the 

random forest model. 

 

https://www.kaggle.com/c/liberty-mutual-fire-peril/discussion/9880
https://www.kaggle.com/c/liberty-mutual-fire-peril/discussion/9880
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The normalized Gini coefficient for this model on the training and test samples is: 

 

Normalized Gini on training sample = 0.2943 / 0.32214 = 0.91358 

Normalized Gini on test sample = 0.28127 / 0.3115 = 0.90295  

Difference in normalized Gini = 0.91358 - 0.90295 = 0.01063 
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The following two graphs show the same information as the previous two but for the ordinary linear regression 

model. 

  

 

Similarly, the normalized Gini coefficient for this model is:  

 

Normalized Gini on training sample = 0.28569 / 0.32214 = 0.88685 

Normalized Gini on test sample = 0.26999 / 0.3115 = 0.86674  

Difference in normalized Gini = 0.88685 - 0.86674 = 0.02011 

 

Note that the normalized Gini for the random forest model is higher on both the training and testing samples than 

the normalized Gini for the linear regression model. Furthermore, the difference in normalized Gini between the 

training and testing sample is smaller for the random forest than it is for the linear model. Thus, in this example, 

the random forest model has a better fit, and generalizes better than the linear model. 
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The R code used to generate the plots above follows. 

# 

# Fit random forest model on training data 

# 

library(randomForest) 

cw_train <- subset(cw, sample == "Train") 

set.seed(456) 

m1.cw <- randomForest(weight ~ Diet + Time, 

                               data = cw_train) 

# Predicted on Training Sample 

cw_train$weight_p <- predict(m1.cw, cw_train) 

train_pgin <- round(with(cw_train,  

                   WeightedGini(weight, count, weight_p)), 5) 

xtitle <- paste("Random Forest Gini Coefficient =",  

                round(train_pgin,5)) 

with(cw_train, plot(LorenzCurve2(weight, count, weight_p),  

     col="blue", lwd=2,  

     main="Training Sample", xlab=xtitle)) 

# Predicted on Test Sample 

cw_test$weight_p <- predict(m1.cw, cw_test) 

test_pgin <- round(with(cw_test,  

                         WeightedGini(weight, count, weight_p)), 5) 

xtitle <- paste("Random Forest Gini Coefficient =",  

                round(test_pgin,5)) 

with(cw_test, plot(LorenzCurve2(weight, count, weight_p),  

                    col="blue", lwd=2,  

                    main="Test Sample", xlab=xtitle)) 

# 

# Fit linear regression training data  

# 

cw_train <- subset(cw, sample == "Train") 

m3.cw <- lm(weight ~ Time, 

               data = cw_train) 

# Predicted on Training Sample 

cw_train$weight_p <- predict(m3.cw, cw_train) 

train_pgin <- round(with(cw_train,  

                         WeightedGini(weight, count, weight_p)), 5) 

xtitle <- paste("Linear Model Gini Coefficient =",  

                round(train_pgin,5)) 

with(cw_train, plot(LorenzCurve2(weight, count, weight_p),  

                    col="blue", lwd=2,  

                    main="Training Sample", xlab=xtitle)) 

# Predicted on Test Sample 

cw_test$weight_p <- predict(m3.cw, cw_test) 

test_pgin <- round(with(cw_test,  

                        WeightedGini(weight, count, weight_p)), 5) 

xtitle <- paste("Linear Model Gini Coefficient =",  

                round(test_pgin,5)) 

with(cw_test, plot(LorenzCurve2(weight, count, weight_p),  

                   col="blue", lwd=2,  

                   main="Test Sample", xlab=xtitle)) 
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The following table shows the gini function from the reldist package, versus the WeightedGini function posted by 

William Cukierski on the Kaggle website at https://www.kaggle.com/c/liberty-mutual-fire-peril/discussion/9880, 

with some modifications for clarity and to add a random number key to break the tie in cases where the model 

produces the same prediction. Some sort routines keep the data’s original order when records have the same value 

of the sort key. If the data set had been previously sorted by actual values, this could cause the value of the Gini 

coefficient to be higher than it should be.  

 

The table also shows the original Lc (Lorenz curve) function from the ineq package as well as a version modified 

to allow sorting by predicted values. 

 

gini() function (x, weights = rep(1, length = length(x)))  

{ 

    ox <- order(x) 

    x <- x[ox] 

    weights <- weights[ox]/sum(weights) 

    p <- cumsum(weights) 

    nu <- cumsum(weights * x) 

    n <- length(nu) 

    nu <- nu/nu[n] 

    sum(nu[-1] * p[-n]) - sum(nu[-n] * p[-1]) 

} 

 

WeightedGini(

) 

function(actual, weights, predicted){ 

      # Modification of code posted in Kaggle by William Cukierski 

      # https://www.kaggle.com/c/liberty-mutual-fire-peril/discussion/9880 

      # actual = actual frequency, severity, loss cost 

      # corresponding weights = exposure, claim count, exposure 

      # predicted = predicted 

      df = data.frame(actual = actual, weights = weights, predicted = 

predicted) 

      # create random number sort key so ties will be resolved in random order 

      k <- length(df$actual) 

      df$rkey <- runif(k) 

      df <- df[order(df$predicted, df$rkey),] 

      df$random = cumsum((df$weights/sum(df$weights))) 

      totalPositive <- sum(df$actual * df$weights) 

      df$cumPosFound <- cumsum(df$actual * df$weights) 

      df$Lorentz <- df$cumPosFound / totalPositive 

      n <- nrow(df) 

      gini <- sum(df$Lorentz[-1]*df$random[-n]) - sum(df$Lorentz[-n]                              

* df$random[-1]) 

      return(gini) 

} 

 
Lc function (x, n = rep(1, length(x)), plot = FALSE)  

{ 

    ina <- !is.na(x) 

    n <- n[ina] 

    x <- as.numeric(x)[ina] 

    k <- length(x) 

    o <- order(x) 

    x <- x[o] 

    n <- n[o] 

    x <- n * x 

    p <- cumsum(n)/sum(n) 

https://www.kaggle.com/c/liberty-mutual-fire-peril/discussion/9880
https://www.kaggle.com/c/liberty-mutual-fire-peril/discussion/9880
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    L <- cumsum(x)/sum(x) 

    p <- c(0, p) 

    L <- c(0, L) 

    L2 <- L * mean(x)/mean(n) 

    Lc <- list(p, L, L2) 

    names(Lc) <- c("p", "L", "L.general") 

    class(Lc) <- "Lc" 

    if (plot)  

        plot(Lc) 

    Lc 

} 

 

LorenzCurve2 # Lorenz Curve function that uses predicted values for sorting 

LorenzCurve2 <- function (x, n = rep(1, length(x)), xhat, plot = FALSE)  

{ 

      # Modification of Lc function in ineq package 

      # x = actual (frequency, severity, loss cost) 

      # xhat = predicted (frequency, severity, loss cost) 

      # n = weights (exposure, claims, exposure) 

      # data will be sorted in ascending order of prediction 

      # Lorenz Curve will be plotted based on actual values 

      ina <- !is.na(x) 

      n <- n[ina] 

      x <- as.numeric(x)[ina] 

      xhat <- as.numeric(xhat)[ina] 

      k <- length(x) 

      # create random number sort key so ties will be resolved in random order 

      #rkey <- runif(k) 

      #o <- order(xhat, rkey) 

      o <- order(xhat) 

      x <- x[o] 

      n <- n[o] 

      x <- n * x 

      p <- cumsum(n)/sum(n) 

      L <- cumsum(x)/sum(x) 

      p <- c(0, p) 

      L <- c(0, L) 

      L2 <- L * mean(x)/mean(n) 

      Lc <- list(p, L, L2) 

      names(Lc) <- c("p", "L", "L.general") 

      class(Lc) <- "Lc" 

      if (plot)  

            plot(Lc) 

      Lc 

} 
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Calculation of lift charts 
Lift charts and double lift charts are typically used to compare the relative performance of two or more models.  

One of the models is usually the one you are currently using in your production environment. The other model, 

sometimes called the challenger model, you hope will be a better model.  Lift charts will give us a graphical way 

to compare the two models.  For lift charts you create one chart per model and you can gain some valuable 

insights even if you only have a single model that you are working with. For double lift charts you create one 

chart per pair of models that you want to compare. 

The procedure to calculate a lift chart for model “X” is as follows: 

1. Calculate predicted values based on model “X” and sort the data from lowest to highest based on these 

predicted values. 

2. Group your data in bins based on Step #1 and putting the same volume of exposure in each bin.  Using 

five, ten, or twenty bins is typical. 

3. For each bin, calculate the average predicted value and the average actual value. 

4. Plot the results.  On the horizontal axis you have the bins (from lowest to highest).  On the vertical axis 

you have the average predicted value and the average actual value. 

To compare model lift between two models, say “A” and “B,” we apply the above procedure to each model and 

then place the charts side by side.  We always calculate lift on holdout data. 

Keep in mind that the records that make up each of the bins for the model “A” chart need not be the same as the 

records used in the model “B” chart.  The bins in each chart depend on the predictions made by each model. 

For each chart, the average predicted values increase as we move from left to right because we ordered the data 

from lowest to highest based on the predicted value.  The actual average values need not follow this pattern, but if 

our model accurately predicts the actual values they would also increase (some small reversals in the pattern are 

fine) as we move from left to right.  Large deviations would suggest that our model is not picking up something in 

the actual experience. 

  



 
 

   

 
 

 
 

The CAS Institute 4350 North Fairfax Drive, Suite 250, Arlington, VA 22203 
info@thecasinstitute.org   Phone 703-276-3100   Fax 703-276-3108 

TheCASInstitute.org 
P a g e  12 | 21 

 

In the following graph we have the results for models “A” and “B.” 

 

 

In these graphs, we have normalized the plotted values (predicted and actuals) by dividing by the overall (across 

the entire holdout dataset) average predicted value. 

On the left-hand side, we can see that model “A” average predicted value for bin #1 is about 0.75 of the overall 

average predicted value.  At the other extreme, in bin #10, the average predicted value is about 1.38 times the 

overall average predicted value.  Therefore, the lift that model “A” provides is equal to 0.63 = 1.38 – 0.75; 

namely, the distance between bin #1 and bin #10 is about 63% of the overall average predicted value.  In practice, 

you will also see the lift of a model reported as the ratio of the highest bin to the lowest bin.  In our example, this 

ratio would be 1.84 = 1.38 / 0.75 and we would say that our model provides a lift of 1.84. 

Note that while our model somewhat tracks the actual experience the agreement is not very good (especially in 

bins 8, 9, and 10).   

For model “B”, shown on the left-hand panel, the lift is equal to 0.94 = 1.59 – 0.66.  If we calculate lift as the ratio 

of highest bin to lowest bin we would get 2.41 = 1.59 / 0.66.  Model “B” is able to separate the risks more than 

model “A.”  But also note that model “B” over predicts the actual experience in bins 7 through 10. 

The R code to produce the above graphs is presented next. 
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# 

# Using the car.csv data from the book 

# Generalized Linear Models for Insurance Data 

# by Piet de Jong and Gillian Heller 

# http://www.acst.mq.edu.au/GLMsforInsuranceData/ 

# 

dta <- read.csv("car.csv") 

dta <- dta[,1:10] 

dta$veh_age <- as.factor(dta$veh_age) 

dta$agecat <- as.factor(dta$agecat) 

 

# separate all records with positive claims cost 

idx <- dta$claimcst0 > 0 

dtb <- dta[idx,] 

dtb$obs <- 1:(dim(dtb)[1]) 

 

rm(idx, dta) 

 

# add random numbers and split data into training and holdout 

set.seed(189763) 

dtb$rnd <- runif(dim(dtb)[1]) 

idx <- dtb$rnd < 0.6 

dt.train <- dtb[idx,] 

dt.holdout <- dtb[!idx,] 

rm(idx, dtb) 

 

# 

# Fit a simple gamma GLM with two predictors 

# This will be our current base model 

# 

fit.base <- glm(claimcst0 ~ area + veh_age, data = dt.train,  

                family = Gamma(link = "log")) 

dt.holdout$base <- predict(fit.base, newdata = dt.holdout, type = "response") 

# 

# Fit a "superior" model by including a new variable 

# Store our model predictions in the dataset 

# 

fit.A <- glm(claimcst0 ~ area + veh_age + gender, data = dt.train,  

             family = Gamma(link = "log")) 

dt.holdout$mod.A <- predict(fit.A, newdata = dt.holdout, type = "response") 

 

# 

# Calculate bins of equal exposure based on sorting 

# by model A predictions 

# 

set.seed(13472) 

ord <- order(dt.holdout$mod.A, runif(length(dt.holdout$mod.A))) 

dt.holdout <- dt.holdout[ord,] 

cum.expo <- cumsum(dt.holdout$exposure) 

total.exposure <- sum(dt.holdout$exposure) 

bks <- c(0, 1:9 * total.exposure/10, 10.2 * total.exposure/10) 

dt.holdout$bin.A <- cut(cum.expo, breaks = bks, labels = 1:10) 

dt.holdout <- dt.holdout[order(dt.holdout$obs),] 
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rm(ord, cum.expo, total.exposure, bks) 

 

# Check that summing exposure by bin number gives about 

# equal exposure in each bin 

tapply(dt.holdout$exposure, dt.holdout$bin.A, sum) 

 

# 

# Now let's calculate the lift that the new model provides 

# compared to the current base model using deciles 

# 

avg.mod.A <- tapply(dt.holdout$mod.A, 

                    dt.holdout$bin.A, mean)/mean(dt.holdout$mod.A) 

avg.actual <- tapply(dt.holdout$claimcst0,  

                     dt.holdout$bin.A, mean)/mean(dt.holdout$mod.A) 

 

par(mar = c(4,4,1,1)+0.1) 

lim = c(0.5, 1.65)  

plot(x = 1:10, y = avg.actual, type = "b", ylim = lim,  

     xlab = "Deciles", ylab = "") 

points(x = 1:10, y = avg.mod.A, pch = 16, col = "red") 

lines(x = 1:10, y = avg.mod.A, col = "red") 

text(x = 8, y = avg.actual[8], labels = "Actual", pos = 1) 

text(x = 4, y = avg.mod.A[4], labels = "Model A", pos = 3, col = "red") 

abline(h = avg.mod.A[c(1,10)], lty = 3, col = "red") 

arrows(x0 = 1.5, y0 = avg.mod.A[1], x1 = 1.5, y1 = avg.mod.A[10],  

       code = 3, col = "red", angle = 15, length = 0.1) 

text(x = 1.5, y = 1.2,       

     labels = paste(c("Lift = ",                        

                      round(avg.mod.A[10],2), " - ",                        

                      round(avg.mod.A[1],2), " = ", 

                      round(diff(avg.mod.A[c(1,10)]),2)), 

                    collapse = ""), 

     pos = 4, cex = 0.8, col = "red") 

 

rm(avg.mod.A, avg.actual, lim) 

 

# 

# Fit a complete model by including all variables 

# 

fit.B <- glm(claimcst0 ~ area + veh_age + gender + agecat +  

                         veh_value + veh_body,  

             data = dt.train, family = Gamma(link = "log")) 

dt.holdout$mod.B <- predict(fit.B, newdata = dt.holdout, type = "response") 

 

# 

# Calculate bins of equal exposure based on sorting 

# by model B predictions 

# 

set.seed(13472) 

ord <- order(dt.holdout$mod.B, runif(length(dt.holdout$mod.B))) 

dt.holdout <- dt.holdout[ord,] 

cum.expo <- cumsum(dt.holdout$exposure) 

total.exposure <- sum(dt.holdout$exposure) 

bks <- c(0, 1:9 * total.exposure/10, 10.2 * total.exposure/10) 



 
 

   

 
 

 
 

The CAS Institute 4350 North Fairfax Drive, Suite 250, Arlington, VA 22203 
info@thecasinstitute.org   Phone 703-276-3100   Fax 703-276-3108 

TheCASInstitute.org 
P a g e  15 | 21 

 

dt.holdout$bin.B <- cut(cum.expo, breaks = bks, labels = 1:10) 

dt.holdout <- dt.holdout[order(dt.holdout$obs),] 

 

rm(ord, cum.expo, total.exposure, bks) 

 

# Check that summing exposure by bin number gives about 

# equal exposure in each bin 

tapply(dt.holdout$exposure, dt.holdout$bin.B, sum) 

 

# 

# Now let's calculate the lift that the new model provides 

# compared to the current base model using deciles 

# 

avg.mod.B <- tapply(dt.holdout$mod.B,  

                    dt.holdout$bin.B, mean)/mean(dt.holdout$mod.B) 

avg.actual <- tapply(dt.holdout$claimcst0,  

                     dt.holdout$bin.B, mean)/mean(dt.holdout$mod.B) 

 

par(mar = c(4,4,1,1)+0.1) 

lim = c(0.5, 1.65) 

plot(x = 1:10, y = avg.actual, type = "b", ylim = lim,  

     xlab = "Deciles", ylab = "") 

points(x = 1:10, y = avg.mod.B, pch = 16, col = "red") 

lines(x = 1:10, y = avg.mod.B, col = "red") 

text(x = 7, y = avg.actual[7], labels = "Actual", pos = 1) 

text(x = 9, y = avg.mod.B[9], labels = "Model B", pos = 2, col = "red") 

abline(h = avg.mod.B[c(1,10)], lty = 3, col = "red") 

arrows(x0 = 1.5, y0 = avg.mod.B[1], x1 = 1.5, y1 = avg.mod.B[10],  

       code = 3, col = "red", angle = 15, length = 0.1) 

text(x = 1.5, y = 1.4, 

     labels = paste(c("Lift = ", 

                      round(avg.mod.B[10],2), " - ", 

                      round(avg.mod.B[1],2), " = ", 

                      round(diff(avg.mod.B[c(1,10)]),2)), 

                    collapse = ""),  

     pos = 4, cex = 0.8, col = "red") 

 

rm(avg.mod.B, avg.actual, lim)  

 

 

Calculation of double lift charts 
A common concern that arises during a predictive modeling engagement is where does a new model differ the 

most in its predictions relative to a current model and how do these models perform against actual experience.  

Double lift charts are helpful in this situation as the chart directly compares two models. 

Suppose we have models “A” and “B.”  To create a double lift chart do the following: 

1. Using the predicted values from model “A” and model “B” calculate their ratio.  We will use these values 

to sort the data from lowest ratio to largest ratio. 

2. Create bins of equal volume exposure based on the ratio calculated in step #1. 
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3. For each bin, calculate the average predicted value based on model “A”, the average predicted value 

based on model “B,” and the average actual experience. 

4. Plot the points calculated in the previous step. 

You can normalize the values by dividing them by the overall predicted average.  The following graph shows an 

example of a double lift chart: 

 

In the above graph we calculated the ratio as model “B” divided by model “A”.  In the first bin, we have the 

records where this ratio is the smallest; that is, the records where model “A” predicts much larger relative to 

model “B.”  Similarly, the records that belong to bin #10 are those where model “B” predicts large values relative 

to the predictions of model “A.”  These two bins contain the records where these models disagree the most. 

Notice that in the above graph, model “A” is mostly flat and ‘far away’ from the actual experience (except for 

bins 6 and 8).  Model “B” seems to track actuals a bit better.  The volatility of actual experience makes it difficult 

to pick a clear better performing model. On the lower bins (1, 2, and 3) model “B” seems better.  On the higher 

bins (8, 9, and 10) model “A” seems better. 
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The R code to calculate the double lift chart is: 

# 

# Double lift chart comparing models A and B 

# 

s.ratio <- dt.holdout$mod.B / dt.holdout$mod.A 

summary(s.ratio) 

bks <- c(0.1, 

         quantile(s.ratio, probs = seq(0, 1, length = 11))[-c(1,11)], 2.5) 

ct <- cut(s.ratio, breaks = bks, labels = 1:10) 

avg.mod.A <- tapply(dt.holdout$mod.A, ct, mean)/mean(dt.holdout$mod.A) 

avg.mod.B <- tapply(dt.holdout$mod.B, ct, mean)/mean(dt.holdout$mod.B) 

avg.actual <- tapply(dt.holdout$claimcst0, ct, mean)/mean(dt.holdout$claimcst0) 

  

par(mar = c(4,4,1,1)+0.1) 

lim <- range(c(avg.actual, avg.mod.A, avg.mod.B)) 

plot(x = 1:10, y = 1:10, 

     type = "n", ylim = lim, xlab = "Deciles", ylab = "") 

  

points(x = 1:10, y = avg.actual, pch = 1) 

lines(x = 1:10, y = avg.actual) 

text(x = 4, y = avg.actual[4], labels = "Actual", pos = 4) 

  

points(x = 1:10, y = avg.mod.A, col = "red", pch = 16) 

lines(x = 1:10, y = avg.mod.A, col = "red") 

text(x = 3, y = avg.mod.A[3], labels = "Model A", pos = 3, col = "red") 

  

points(x = 1:10, y = avg.mod.B, col = "blue", pch = 16) 

lines(x = 1:10, y = avg.mod.B, col = "blue") 

text(x = 9, y = avg.mod.B[9], labels = "Model B", pos = 2, col = "blue") 

  

rm(s.ratio, bks, ct, avg.mod.A, avg.mod.B, avg.actual, lim) 
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The Receiver Operating Characteristic Curve 
For a logistic model the prediction is a probability that the event under study occurs.  For example, if we are 

looking at policy quotations we may want to study the conversion to a sold policy.  In this situation, we may build 

a model that would predict the probability that a quote converts to a sold policy.  With this information, we may 

want to take specific actions and in order to do this we typically select a threshold value.  Having selected a 

threshold value for our model we can classify each record in our data into four categories: 

  Model Prediction 

  POSITIVE NEGATIVE 

Actual Observed Value 
TRUE True Positive False Negative 

FALSE False Positive True Negative 

 

The above table is named the confusion matrix.  In two of the four entries, our model’s predictions are accurate; 

namely, the cells labeled true positive and true negative.  For the other two entries, namely, false positive and 

false negative, our model gets confused and provides erroneous predictions. 

There are a few simple calculations that we can do with the entries in the confusion matrix that are important.  

The ratio of true positive to the total actual true records is called the sensitivity or the true positive rate.  The ratio 

of true negative to total actual negative records is called the specificity. Note that one minus specificity is called 

the false positive rate.   

These ratios clearly depend on the choice of threshold.  As we vary the threshold from zero to one, the specificity 

and sensitivity of our classifier change and the receiver operating characteristic curve is a graphical summary of 

these measures across all possible thresholds. 

To illustrate the construction of a receiver operating characteristic curve we have fitted a logistic model to some 

data.  Using a threshold equal to 10% we get the following confusion matrix: 

  Predicted 

  POSITIVE NEGATIVE 

Actual 
TRUE 244 1 

FALSE 226 73 

 

The true positive rate (sensitivity) is equal to 244 / (244 + 1) = 0.996 and the false positive rate (1 – specificity) = 

226 / (226 + 73) = 0.756. 

Using a threshold of 30% we get the following confusion matrix: 

  Predicted 

  POSITIVE NEGATIVE 

Actual 
TRUE 222 23 

FALSE 133 166 
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The true positive rate (sensitivity) is equal to 222 / (222 + 23) = 0.906 and the false positive rate (1 – specificity) 

= 133 / (133 + 166) = 0.445. 

These computations give us two points (see graph below) to plot in our ROC curve. Doing 50 thresholds between 

0 and 1 gives the following graph: 

 

The best possible model would have a sensitivity of 1 and a specificity of 1 also.  The plotted point in the ROC 

curve would be located in the upper left-hand corner.  Better models try to reach that point.  Models that are no 

better than random guessing would produce a ROC curve that stays close to the diagonal line (see gray line) from 

(0,0) to (1,1). 

Typically, one also computes the area under the ROC curve; usually denoted as AUC.  In the above example, the 

area under the curve is equal to about 0.818.  A perfect model would have an area under the curve of 1 and a 

random guessing model (area under the diagonal line) would have an AUC equal to 0.5.  The area under the curve 

gives you a summary of the model across all thresholds. 

Note that this ROC graph has been calculated on the training data used to fit the model.  Therefore, this ROC 

graph is overly optimistic.  Candidates are urged to compare this ROC graph with one using holdout data.  Within 

the dataset, the variable STUDY has four unique levels (development, indiana, n172, and eortc/mrc). 

We used the development subset to train our model. Candidates can use the indiana subset as a holdout 

sample. 
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The R code to generate the above graph is: 

library(foreign) 

library(rms) 

  

# Set to TRUE to generate the graph as a JPEG file 

generate.file <- FALSE 

  

# 

# Using the testicular cancer (t821.sav) data from the book 

# Clinical Prediction Models 

# by Ewout W. Steyerberg 

# http://www.clinicalpredictionmodels.org/ 

# 

tmp <- read.spss("t821.sav", to.data.frame = TRUE) 

# The data t821.sav is in SPSS format and reading it will 

# throw a warning message about undeclared levels in the 

# HOSP variable.  Please ignore it as we are not using  

# this variable for this example. 

n544 <- tmp[tmp$STUDY == "development",] 

  

# 

# Set the vector Y to Yes or No depending 

# on whether the patient has benign tissue 

# 

Y <- rep("No", 544) 

Y[n544$NEC == 1] <- "Yes" 

Y <- as.factor(Y) 

  

full <- lrm(NEC ~ TER + PREAFP + PREHCG + SQPOST + REDUC10, 

            data = n544, 

            x = TRUE, 

            y = TRUE) 

  

probs <- predict(full, type = "fitted.ind") 

  

thresholds <- seq(0.005, 0.93, length = 50) 

N <- length(thresholds) 

TPR <- numeric(N) # true positive rates 

FPR <- numeric(N) # false positive rates 

for(i in 1:N){ 

  mod.pred <- rep("N", 544) 

  mod.pred[probs > thresholds[i]] <- "Y" 

  tb <- table(mod.pred, Y)[2:1,2:1] #confusion matrix 

  TPR[i] <- tb[1,1] / (tb[1,1]+tb[2,1]) 

  FPR[i] <- tb[1,2] / (tb[1,2]+tb[2,2]) 

} 

  

if(generate.file) 

  jpeg(filename = "roc-example.jpeg", width = 640, height = 380) 

op <- par(mar = c(4,4,1,1)) 

plot(x = FPR, y = TPR,  

     type = "p", pch = 1, cex = 0.5, 

http://www.clinicalpredictionmodels.org/
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     xlim = c(0,1), ylim = c(0,1), 

     ylab = "True Positive Rate", xlab = "False Positive Rate") 

lines(x = c(0,1), y = c(0,1), col = "gray") 

text(y = 0.996, x = 0.756, label = "10%", cex = 0.8, pos = 1) 

text(y = 0.906, x = 0.445, label = "30%", cex = 0.8, pos = 1) 

if(generate.file) dev.off() 

  

# 

# Calculate an approximation to the  

# area under the curve (AUC) using 

# mid-point as the height of the  

# approximating rectangles 

# 

FPR <- rev(FPR) 

TPR <- rev(TPR) 

rect.base <- (FPR[-1] - FPR[-length(FPR)]) 

AUC <- (sum(rect.base * TPR[-1]) + sum(rect.base * TPR[-length(TPR)]))/2 

 


