
 
 

    
 
 
 

The CAS Institute 4350 North Fairfax Drive, Suite 250, Arlington, VA 22203 
info@thecasinstitute.org   Phone 703-276-3100   Fax 703-276-3108 

TheCASInstitute.org 

Study Note: Model Validation and Holdout Data 
04/02/2018 

 

The importance of testing models on out-of-sample data should not be underestimated.  
However, there are different types of testing that accomplish different things.  For 
example, it is common to divide one’s data into three parts: (1) a training set, used for 
building models; (2) a test set, used frequently during the model build process to test 
those models; and (3) a holdout set, saved until the end of the modeling process, to 
provide an objective metric of goodness of fit that can be reported to management.  
(The term “validation set” is sometimes used, but since it is sometimes used for (2) and 
sometimes for (3), we have avoided this term.)  This metric could be a Gini coefficient, 
the area under the ROC curve, the squared error (or other cost function), a gains chart, 
or a lift curve, in each case applied to the holdout data the model has not yet seen.  In 
order to ensure that the holdout test is objective, one should separate the holdout data 
as early in the process as practicable1, and store it in a separate file not accessible 
during the modeling process.   

There is no hard-and-fast rule for the sizes of these sets across all types of models, but 
for many types of models, it is usual to assign one-third of the data at random to each 
set.  It may be tempting to make the training set larger and the test and holdout datasets 
smaller, but (a) building on a smaller dataset is a good way to avoid a natural tendency 
toward overfit models with too many parameters and (b) if your test and holdout 
datasets are too small, one will be tempted not to trust the out-of-sample tests, which 
rather defeats their purpose. 

The reason that the test set will not serve the purpose of the objective test is that, since 
one has repeatedly compared to it, one has in some sense fit the model to the test 
data as well as to the training data.  In fact, one can make a virtue of this and swap the 
roles of the training and test data during the course of the modeling process, as one 
zeroes in on the best model.   

We are often asked why one needs holdout data when one can get an out-of-sample 
test using cross-validation, where a dataset is divided into K folds and the goodness of 
fit calculated by using the model fit to all folds but the ith to make predictions for the 

                                                 
1 Typically one does some level of data profiling before separating the holdout data in order to: (a) match control 
totals to ensure the dataset is complete and correct; and (b) ensure that all possible values are known for each 
categorical field.   



observations in the ith fold.  This can indeed work if the model building process is 
completely automated.  However, when human beings are building the model, the 
choice of model (including type of model, which variables were candidates to final 
feature selection, which derived features were created) has typically been impacted 
by all the data the modeler has worked with…the whole dataset.  Even though one 
may be fitting parameters and even performing final feature selection separately for 
each collection of K-1 folds, those models will have been influenced by all the data.  
This does not mean that cross-validation is useless for human-built models.  It merely 
means that the proper use of cross-validation is as a substitute for the training/test split, 
not as a substitute for having true holdout data.  (In fact, the suggestion above to swap 
training and test data during the modeling process is a form of two-fold cross-validation 
that is very tractable for human modelers.)  Also, note that nothing is lost in terms of the 
final model by using the holdout approach.  It is familiar in the cross-validation approach 
that the union of the cross-validation models provides the goodness of fit metrics whilst 
the model to be used is fit on all the data at once.  The same is true in the holdout 
approach.  After testing on holdout data to obtain the objective quality of the 
model, one can (and usually does) refit on the complete data to obtain the final 
model.  One can even change the model if adding the holdout data makes it clear 
that one should.  What one cannot do is claim a better goodness of fit than one 
has already measured. 

In order to ensure independence of the training, test, and validation data, it is good 
practice to ensure the correlated observations (i.e., ones that are still correlated 
even after conditioning on the model variables) are all put into the same group.  
For example, if the unit of observation is one policy for one year, the series of 
observations that correspond to a single policyholder over that period of time would be 
put into the same group.  Or if the model is a severity model for weather claims, claims 
from the same storm might be put into the same group.  If time is the main driver of 
correlation then one might use a contiguous block of time for each group, known as out-
of-time validation.  For many insurance problems, however, time is not the main 
dimension, and splitting on the time variable may actually be undesirable because one 
may want to incorporate time explicitly in the model or to test consistency of effects 
across time within the training data as one of the criteria for including a variable.  This 
latter is actually straightforward to do: Look at residuals across the levels of the variable 
in question for the earlier half (temporally) of the data and for the latter half of the data, 
and compare. 

Finally, one practical aspect of splitting data for testing and validation is that datasets 
evolve.  Perhaps, for example, it turns out that a small set of observations were 
erroneously included, or the business identifies certain observations as not relevant to 
going-forward strategy and asks that they be omitted.  If you have used a random 



number generator and appended a string of random numbers to a list of policy numbers 
in order to split the data into thirds, now you not only need to have stored the random 
number seed and have access to the exact same random number generator to 
reproduce the random split, and to have sorted your data the precise way you had done 
previously, you also need to match at precisely the right midway point in your data 
filtering process.  Thus, it can be much simpler to use a hash of the relevant unit 
information (e.g., policy number and policyholder name) rather than a random number 
generator in order to assign an observation to a group.  However, the selection of hash 
function is critical, since one needs to avoid assigning similar hashes to similar initial 
values, and most hash functions will fail this test.  However, the hash function MD5 is 
considered suitable for this purpose.2  

 
 
 
 
 

                                                 
2 The interested reader will find additional information in section 4.1 of Kohavi, Henne, and 
Sommerfield, “Practical Guide to Controlled Experiments on the Web”, KDD2007, currently 
available at https://ai.stanford.edu/~ronnyk/2007GuideControlledExperiments.pdf. 
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